

Faculty of Science

Bachelor of Science (B.Sc.)

SUBJECT: PHYSICS B.Sc. IV Semester Paper-Major& Minor

ELECTRICITY, MAGNETISM AND ELECTROMAGNETIC THEORY

Course Outcome

CO No.	Course Outcomes	PSOs Addressed	Cognitive Level*
CO -I	The student will arrive at an understanding of electrostatics, Gauss's theorem, Gauss's law and their application,	1,2,3,4	U, R, E, Ap
CO -II	The student will arrive at an understanding of Magnetostatistics with emphasis on Lorentz force, Biot-Savart law ant its application, Ampere's law, free and bound currents, magnetization vector, magnetic substances.		U, Ap, R, E
CO -III	The student will arrive at an understanding of steady & non steady current, a-c & dc circuits, and various network theorem.	1,2,3,4	R, U, C
CO -IV	The student will arrive at an understanding of the motion of charged particles in electric and magnetic fields, the relevant equipment and their use	1,2,3,4	U, R, Ap
CO -V	The student will arrive at an understanding of electrodynamics with emphasis on Faraday's laws, Maxwell equations and their application, Fresnel's equations,	1,2,3,4	U, R, Ap, C
CO -VI	The student will arrive at an understanding of electromagnetic waves with emphasis on, reflection, refraction and polarization at different media	1,2,3	U, Ap, E, C, An

Credit and Marking Scheme

	Marks		Total Marks	
	Credits	Internal	External	Total Marks
Theory	4	40	60	100
Practical	2	40	60	100
Total	6		200	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Evaluation Scheme

	Marks	
	Internal	External
Theory	3 Internal Exams of 20 Marks	1 External Exams
•	(During the Semester)	(At the End of Semester)
	(Best 2 will be taken)	
Practical	3 Internal Exams	1 External Exams
	(During the Semester)	(At the End of Semester)
	(Best 2 will be taken)	,

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Content of the Course

Theory

No. of Lectures (in hours per week): 4.5 Hrs. per week
Total No. of Lectures: 60 Hrs.

Maximum Marks: 60

Units	Topics	No. of Lectures
I	Electrostatics	12
	An overview of thermal and hydroelectric power plants in Madhya Pradesh.	
	2. Electrostatic field; Electric flux; Gauss's theorem of	
	electrostatics; Applications of Gauss theorem: Electric field due to	
	infinite long charged wire; Uniformly charged spherical shell and	
	solid sphere; Charged plate; Conservative nature of electrostatic	
	field Laplace and Poisson's equations; Uniqueness theorem.	
	3. Dielectrics; Polar and non-polar molecules; Parallel plate capacitor	
	with a dielectric; Electrical susceptibility and dielectric constant;	
	Polarization and Polarization vector (P); Displacement vector (D);	
	Intensity of Electric field (E); Relationship between D, E and P.	
	4. Gauss's law in dielectrics; Clausius-Mossotti relation, Langevin-	
	Debye formula; Ferroelectric and Paraelectric materials; Hysteresis	
	loop for ferroelectrics.	
	Keywords/Tags:. Hydroelectric power plant, Electrostatic field, Dielectrics, Polarization vector Displacement vector	
II	Magnetostatics	12
	1. Lorentz force equation and magnetic field B; Biot-Savart's law;	
	Calculation of magnetic intensity H for solenoid and anchor ring.	
	2. Ampere's circuital law and its applications for solenoid and Toroid;	
	Basic law of magnetostatics in differential form $A \times B = \mu_0 J$, $A.B = 0$	
	; Free and bound currents; Magnetization and magnetization vector	
	M; Magnetic permeability and susceptibility; Derivation of	
	A×M=J _b for a non-uniformly magnetized substance; Relationship	
	between B , H and M .	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

	T	
	3. Diamagnetic, Paramagnetic and Ferromagnetic substances; B-H	
	Curve and Hysteresis loss.	
	4. General idea about AC and DC motors, Motor winding.	
	5. Keywords/Tags: Magnetic field, Magnetization, Hysteresis loss, Motor	
	winding	
III	Current electricity	12
	1. Network theorems: Concept of ideal current and voltage sources;	
	Thevenin's theorem; Norton's theorem; Millman's theorem;	
	Maximum power transfer theorem.	
	2. Transient current: Growth and decay of current in LR circuit;	
	Charging and discharging of a capacitor through resistor;	
	Measurement of high resistance by leakage; Charging and	
	discharging of a condenser through an inductance and resistance.	
	3. Alternating current: Complex number and their applications in	
	alternating current circuits (RL, RC and LC); Series LCR (acceptor)	
	and parallel LCR (rejector) circuits; Power factor.	
	4. A.C. bridges: Maxwell's bridge; Owen'sbridge; Anderson's bridge; Kelvin's bridge.	
	Keywords/Tags: Network theorems, Transient current, A.C. bridges.	
IV	Motion of charged particles in	12
	electric and magnetic field	
	1. Motion of charged particles in electric and magnetic field,	
	Construction and working principle of Cyclotron and Betatron;	
	Thomson's method for the determination of specific charge (e/m)	
	of electron.	
	2. Ballistic galvanometer: Torque on a current loop; Current and	
	charge sensitivity; Electromagnetic damping, Logarithmic damping;	
	CDR.	
	3. Introduction to CRO: Block Diagram of CRO; Applications	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

of CRO: (1) Study of Waveform, (2) Measurement of Vacurrent, Frequency, and Phase Difference Electrom induction: Faraday's law; Lenz's law; Integral and differentiate of Faraday's law, Self and mutual inductance; Reciprocity the Self-mutual of coil; Mutual inductance of two coils; Energy stangentic field. Keywords/Tags: Motion of charged particles, specific classification.	nagnetic al forms neorem; tored in harge,
Electrodynamics 1. Equation of Continuity for current; Maxwell's displated current; Derivation of Maxwell's equations; Poynting theorem 2. Electromagnetic wave equations; Plane electromagnetic waveuum and dielectric media; Reflection and refraction at a boundary of dielectric; Polarization by reflection and F equation; Brewster's Law. 3. Electromagnetic Waves in conducting medium; Reflection refraction of Electromagnetic wave by the ionosphere; Secan Skip distance and maximum usable frequency. Keywords/Tags: Displacementcurrent, Poynting Electromagnetic wave, Polarization by reflection.	m. vave in a plane Tresnel's on and

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

List of Experiments

- 1) To study the frequency response curve of series LCR Circuit. and determination of resonant frequency, Quality factor and Band width.
- 2) To study the charging and discharging of a capacitor through high resistance.
- 3) To determine the frequency of A.C. Mains with the help of wire vibrating under Lorentz force.
- 4) To Plot Graph showing variation of magnetic field with distance along axis of a circular coil carrying current.
- 5) To draw the B-H curve and determination of Hysteresis loss. (sponsared by dbt star)
- 6) Determination of voltage, frequency and phase difference using CRO.
- 7) Study of sensitivity of CRO.
- 8) Verification of the Thevenin's theorem.
- 9) Verification of the Norton's Theorem.
- 10) Verification of the maximum power transfer theorem
- 11) Verification of the superposition theorem.
- 12) Measurement of self-inductance using Maxwell's bridge.
- 13) Measurement of unknown inductance using Kelvin's bridge.
- 14) Determination of self-inductance by Anderson's bridge.
- 15) Determination of impedance and power factor using LCR Circuit.
- 16) To study of frequency response curve of a parallel LCR circuit and determination of antiresonant frequency and Quality factor.
- 17) Determination of Dielectric constant of Kerosene by resonance method.
- 18) Determination of Self Inductance of a Coil by Rayleigh's
- 19) Method using Ballistic Galvanometer.
- 20) Verification of Millman's theorem
- 21) To study the magnetic field along the axis of a circular coil.
- 22) Determination of M and H using vibrational Magnetometer and Deflection Magnetometer.
- 23) Comparison Of Capacity Of Two Capacitors Using Ballistic Galvanometer.
- 24) Serial And Parallel Resonant Circuits (Sponsored By Dbt Star)
- 25) Maxwell's Bridge: Determination Of Self-Inductance Of A Coil (Sponsored By Dbt

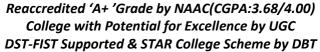
Star)

- 26) Dipole Moment Of An Organic Molecule Acetone Sponsored By Dbt Star)
- 27) Measurement Of Low Resistance. (Sponsared By Dbt Star)
- 28) To Study The Faraday Effect & To Determine Verdet's Constant Sponsored By Dbt Star)
- 29) Study Of Lcr Transient Response (Sponsored By Dbt Star)
- 30) ## Other Experiments Of The Same Difficulty Level May Be Added. ## Student Needs To Perform At Least 06 Experiments.

ST. ALOYSIUS

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Suggested Readings:


- 1. Prakash I. & Ramakrishna, "A Text Book of Practical Physics", Kitab Mahal, 2011,11/e.
- 2. Squires G. L., "Practical Physics", Cambridge University Press, 2015, 4/e.
- 3. Flint B. L. and Worsnop H. T., "Advanced Practical Physics for students", Asia Publishing House, 197.
- 4. Chattopadhyay D. & Rakshit P. C., "**An Advanced Course in Practical Physics**", New Central Book Agency.
- 5. Chattopadhyay **D.**, Rakshit P.C. and Saha B., "**An Advanced Course in Practical Physics**", New Central Book Agency P. Ltd.
- 6. Singh S.P., "Advanced Practical Physics", Pragati Prakashan.
- 7. Tayal D. C., "University Practical Physics", Himalaya Publishing House
- 8. Kumar P. R. Sasi, " Practical Physics", PHI Publication
- 9. Srivastava Anchal, Shukla R. K., "**Practical Physics**", New Age International Publishers.
- 10. Agarwal D. C., "Experimental electronics", Technical Publishing House.
- 11. Srivastava J. P., "Elements of Solid state Physics", PHI Publication.
- 12. Advanced Practical Physics (Vol. 1 & Vol. 2) B.Ghosh and K.G.Mazumder, Sreedhar Publ.
- 13. Instruction Manual for doing experiments in Physics by R.Shrinivasan and K.R. Pariolkar **Suggestive digital platforms web links**

<u>https://www.vlab.co.in/broad-area-physical-sciences</u>, Virtual Labs (Physical Sciences),
Ministry of Education

https://storage.googlecapis.com/uniquecourses/online.html, SWAYAM Online Course

B.Sc IV Sem

(Electricity, Magnetism and Electromagnetic theory)

Elective

Course Outcome

CO No.	Course Outcomes	PSOs Addressed	Cognitive Level*
CO -I	The student will arrive at an understanding of electrostatics, Gauss's theorem, Gauss's law and their application,	1,2,3,4	U, R, E, Ap
CO -II	The student will arrive at an understanding of Magnetostatistics with emphasis on Lorentz force, Biot-Savart law ant its application, Ampere's law, free and bound currents, magnetization vector, magnetic substances.	1,2,3,4,5	U, Ap, R, E
CO -III	The student will arrive at an understanding of steady & non steady current, a-c & dc circuits, and various network theorem.	1,2,3,4	R, U, C
CO -IV	The student will arrive at an understanding of the motion of charged particles in electric and magnetic fields, the relevant equipment and their use	1,2,3,4	U, R, Ap

Credit and Marking Scheme

	Credits	Marks		Total Marks	
	Credits	Internal	External	Total Marks	
Theory	3	40	60	100	
Practical	1	40	60	100	
Total	4	200			

Evaluation Scheme

		Marks	
	Internal	External	
Theory	3 Internal Exams of 20 Marks	1 External Exams	
	(During the Semester)	(At the End of Semester)	
	(Best 2 will be taken)		
Practical	3 Internal Exams	1 External Exams	
	(During the Semester)	(At the End of Semester)	
	(Best 2 will be taken)	,	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Content of the Course

Theory

No. of Lectures (in hours per week): 3.5 Hrs. per week
Total No. of Lectures: 45 Hrs.

Maximum Marks: 60

Units	Topics	No. of Lectures
I	Electrostatics	12
	5. An overview of thermal and hydroelectric power plants in Madhya Pradesh.	1
	6. Electrostatic field; Electric flux; Gauss's theorem of electrostatics; Applications of Gauss theorem: Electric field due to	ı
	infinite long charged wire; Uniformly charged spherical shell and solid sphere; Charged plate; Conservative nature of electrostatic field Laplace and Poisson's equations; Uniqueness theorem.	l
	7. Dielectrics; Polar and non-polar molecules; Parallel plate capacitor with a dielectric; Electrical susceptibility and dielectric constant;	ı
	Polarization and Polarization vector (P); Displacement vector (D); Intensity of Electric field (E); Relationship between D, E and P.	l
	8. Gauss's law in dielectrics; Clausius-Mossotti relation, Langevin- Debye formula; Ferroelectric and Paraelectric materials; Hysteresis loop for ferroelectrics.	l
	Keywords/Tags:. Hydroelectric power plant, Electrostatic field, Dielectrics, Polarization vector Displacement vector	ı
II	Magnetostatics	12
	5. Lorentz force equation and magnetic field B; Biot-Savart's law;	1
	Calculation of magnetic intensity H for solenoid and anchor ring.	ı
	6. Ampere's circuital law and its applications for solenoid and Toroid;	ı
	Basic law of magnetostatics in differential form $A \times B = \mu_0 J$, $A.B = 0$	ı
	; Free and bound currents; Magnetization and magnetization vector	ı
	M ; Magnetic permeability and susceptibility; Derivation of $A \times M = J_b$ for a non-uniformly magnetized substance; Relationship	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

	between B , H and M .	
	7. Diamagnetic, Paramagnetic and Ferromagnetic substances; B-H Curve and Hysteresis loss.	
	8. General idea about AC and DC motors, Motor winding. Keywords/Tags: Magnetic field, Magnetization, Hysteresis loss, Motor winding. 9.	
III	Current electricity	12
	 Network theorems: Concept of ideal current and voltage sources; Thevenin's theorem; Norton's theorem; Millman's theorem; Maximum power transfer theorem. Transient current: Growth and decay of current in LR circuit; Charging and discharging of a capacitor through resistor; Measurement of high resistance by leakage; Charging and discharging of a condenser through an inductance and resistance. Alternating current: Complex number and their applications in alternating current circuits (RL, RC and LC); Series LCR (acceptor) and parallel LCR (rejector) circuits; Power factor. 	
	 A.C. bridges: Maxwell's bridge; Owen'sbridge; Anderson's bridge; Kelvin's bridge. Keywords/Tags: Network theorems, Transient current, A.C. bridges. 	
IV	Motion of charged particles in electric and magnetic field	12
	5. Motion of charged particles in electric and magnetic field, Construction and working principle of Cyclotron and Betatron; Thomson's method for the determination of specific charge (e/m) of electron.	
	 Ballistic galvanometer: Torque on a current loop; Current and charge sensitivity; Electromagnetic damping, Logarithmic damping; CDR. 	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

- Introduction to CRO: Block Diagram of CRO; Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference.
- 8. Electromagnetic induction: Faraday's law; Lenz's law; Integral and differential forms of Faraday's law, Self and mutual inductance; Reciprocity theorem; Self-mutual of coil; Mutual inductance of two coils; Energy stored in magnetic field.

Keywords/Tags: Motion of charged particles, specific charge,

Ballistic galvanometer, CRO, Electromagnetic induction.

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Learning Resources

Text Books, Reference Books, Other resources

Suggested Readings:

- 1 **Electricity, Magnetism & Electromagnetic Theory:** Mahajan S. and Choudhury, ,2012, Tata McGraw.
- 2 **Electricity and Magnetism:** Griffiths D.J.,3rd Edn., 1998, Benjamin Cummings.
- 3 Electricity and magnetism: Murugesan, S. Chand & Co.
- 4 **Feynman Lectures Vol.2:** Feynman R. P., Leighton R.B., Sands M., 2008, Pearson Education
- 5 Electromagnetic field theory: Kshetrimayun R. S., 2012, Cengage Learning.
- 6 **Physics for Degree Students:** C.L. Arora and P.S. Hemne, S.Chand Publications.
- 7 **Electricity and Magnetism**: S.S.Atwood, Dover Publication

S

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

List of Experiments

Credit Value: 1

No. Of Practical hours: 15

- 1. To study the frequency response curve of series LCR Circuit. and determination of resonant frequency, Quality factor and Band width.
- 2. To study the charging and discharging of a capacitor through high resistance.
- 3. To determine the frequency of A.C. Mains with the help of wire vibrating under Lorentz force.
- 4. To Plot Graph showing variation of magnetic field with distance along axis of a circular coil carrying current.
- 5. To draw the B-H curve and determination of Hysteresis loss. (sponsared by dbt star)
- 6. Determination of voltage, frequency and phase difference using CRO.
- 7. Study of sensitivity of CRO.
- 8. Verification of the Thevenin's theorem.
- 9. Verification of the Norton's Theorem.
- 10. Verification of the maximum power transfer theorem
- 11. Verification of the superposition theorem.
- 12. Measurement of self-inductance using Maxwell's bridge.
- 13. Measurement of unknown inductance using Kelvin's bridge.
- 14. Determination of self-inductance by Anderson's bridge.
- 15. Determination of impedance and power factor using LCR Circuit.
- 16. To study of frequency response curve of a parallel LCR circuit and determination of anti-resonant frequency and Quality factor.
- 17. Determination of Dielectric constant of Kerosene by resonance method.
- 18. Determination of Self Inductance of a Coil by Rayleigh's
- 19. Method using Ballistic Galvanometer.
- 20. Verification of Millman's theorem
- 21. To study the magnetic field along the axis of a circular coil.
- 22. Determination of M and H using vibrational Magnetometer and Deflection Magnetometer.

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

- 23. Comparison of capacity of two capacitors using Ballistic Galvanometer.
- 24. Serial and Parallel Resonant Circuits (SPONSARED BY DBT STAR)
- 25. Maxwell's Bridge: Determination of Self-inductance of a coil (sponsared by dbt star)
- 26. Dipole Moment of an organic Molecule Acetone (SPONSARED BY DBT STAR)
- 27. Measurement of low resistance.(sponsared by dbt star)
- 28. To study the Faraday Effect & to determine Verdet's constant(sponsared by dbt star)
- 29. Study of LCR transient response(sponsared by dbt star)
- ## Other experiments of the same difficulty level may be added.
- ## Student needs to perform at least 06 experiments.

Suggested Readings:

- 1. Prakash I. & Ramakrishna, "A Text Book of Practical Physics", Kitab Mahal, 2011,11/e.
- 2. Squires G. L., "Practical Physics", Cambridge University Press, 2015, 4/e.
- 3. Flint B. L. and Worsnop H. T., "Advanced Practical Physics for students", Asia Publishing House, 197.
- 4. Chattopadhyay D. & Rakshit P. C., "**An Advanced Course in Practical Physics**", New Central Book Agency.
- 5. Chattopadhyay **D.**, Rakshit P.C. and Saha B., "**An Advanced Course in Practical Physics**", New Central Book Agency P. Ltd.
- 6. Singh S.P., "Advanced Practical Physics", Pragati Prakashan.
- 7. Tayal D. C., "University Practical Physics", Himalaya Publishing House
- 8. Kumar P. R. Sasi, " Practical Physics", PHI Publication
- 9. Srivastava Anchal, Shukla R. K., "**Practical Physics**", New Age International Publishers.
- 10. Agarwal D. C., "**Experimental electronics**", Technical Publishing House.
- 11. Srivastava J. P., "Elements of Solid state Physics", PHI Publication.
- 12. Advanced Practical Physics (Vol. 1 & Vol. 2) B.Ghosh and K.G.Mazumder, Sreedhar Publ.
- 13. Instruction Manual for doing experiments in Physics by R.Shrinivasan and K.R. Pariolkar

Suggestive digital platforms web links

<u>https://www.vlab.co.in/broad-area-physical-sciences</u>, Virtual Labs (Physical Sciences),
Ministry of Education

https://storage.googlecapis.com/uniquecourses/online.html, SWAYAM Online Course

